In-Line Purification of Carbon Dioxide Used in SFE and SFC by Thermal Oxidation

Michael E. Zorn, Ph.D., Microporous Oxides Science and Technology, L.L.C.

Introduction

Supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) are often compromised by trace impurities present in solvent/mobile-phase carbon dioxide (CO₂). These impurities, commonly used as lubricants in the specialty gas industry,¹ can produce significant background levels, increasing limits of detection and quantification. This problem is especially severe when using electron capture detection (ECD) for trace analyte concentrations.²⁻⁶ With SFE, these contaminants can also restrict the amount of CO₂ that can be used, possibly limiting the extraction efficiency of the technique.

Alternatively, high purity CO_2 can be purchased; however, the costs are significant. Also, contaminant build-up may not be sufficiently mitigated when long dynamic SFE analyses are necessary, or when performing supercritical fluid extraction coupled to gas chromatography (SFE-GC). The purpose of this application note is to present qualitative results of an in-line thermal oxidation-based purification system (the **C O**₂**P**, pronounced "COP") for cleaning CO₂ used in SFE and SFC.

Experimental Section

The **CO₂Purifier** was evaluated by testing three different grades of commercially available carbon dioxide: "Bone Dry grade" (99.8% minimum purity, \$90 per cylinder-1.54ft³), "SFC/SFE grade" (<1,000 ppt ECD responsive contaminants, \$350 per cylinder-1.04 ft³), and "SFE grade" (<10 ppt ECD responsive contaminants, \$600 per cylinder—1.04 ft³). All cylinders were equipped with a helium pad and full length eductor tube.

Each grade was sampled (with and without in-line thermal oxidation purification at 300° C) by directly connecting the gas cylinder to a 150 µm o.d. x 15 µm ID fused silica restrictor, and passing the restrictor through the split/splitless injection port of a gas chromatograph (GC) directly into a DB-5 capillary col-

umn (30 m x 0.25 mm, 0.25 μ m film thickness).

During sampling, the flow of hydrogen (H₂) carrier gas was stopped, and CO₂ was routed into the GC. Cylinder pressure (~100 atm) alone was sufficient to move CO₂ through the system for 30 minutes at a flow rate of 10-20 mL/min (gaseous). The GC injection port and oven were maintained at 30° C.

After a specified period of time, CO_2 flow was stopped and H_2 flow was resumed (at a velocity of approximately 60 cm/sec). After a 2 minute equilibration, a GC run was performed as follows: initial temperature 30 °C, 50 °C/min to 90 °C, 5 °C/min to 240 °C, 10 °C/min to 300 °C, hold for 25 minutes at 300 °C. The ⁶³Ni electron capture detector was maintained at a temperature of 330 °C with flow rate of make-up gas (N₂) at 30 mL/min.

Results and Discussion

Chromatograms of unpurified Bone Dry grade (A), unpurified SFC/SFE grade (B), unpurified SFE grade (C), and $CO_2Purified$ Bone Dry grade (D) are given in Figure 1. As shown, Bone Dry grade is cleaned to a higher purity than either SFE or SFC/SFE grade without purification.

In addition to direct sampling from each of the CO_2 cylinders, higher pressure, higher flow rate off-line SFE experiments (50°C and 300 atm) were performed with the Bone Dry grade. Samples (~200g CO₂) were passed through the CO₂Purifier (maintained at 300°C) for 2 hours at a flow rate of 2 mL/min (~600 mL/min gaseous). The CO₂P was placed in-line between the CO_2 cylinder and the SFE pump. Contaminants were collected on a solid phase adsorbent trap and subsequently eluted with 5 mL hexane. The extracts were concentrated to a volume of 1 mL and analyzed by GC using the previously stated conditions (2µL splitless injection). Long-term purification of the Bone Dry grade showed no noticeable ECDresponding contamination even at these higher flow rate and pressure conditions.

Conclusions

Using an in-line thermal oxidation-based purification system (the $\mathbf{CO_2P}$), minimum purity Bone Dry $\mathbf{CO_2}$ has been purified to levels cleaner than the highest purity, most expensive $\mathbf{CO_2}$ available. Previously prohibitive ECD responsive contamination has been reduced to nondetectable levels, even with 2 hour supercritical fluid extraction at relatively high flow rates (~1 L/min gaseous). In addition to lower limits of detection and quantification, significant cost savings can be realized using the $\mathbf{CO_2P}$ with inexpensive, low purity $\mathbf{CO_2}$ in place of much more expensive, high purity $\mathbf{CO_2}$.

References

- (1) Vassilaros, D.L. *LC-GC* **1994**, 12, 94-104.
- (2) Gere, D.R.; Derrico, E.M. *LC-GC* **1994**, May, 352-366.
- (3) Nielen, M.W.F.; Stab, J.A.; Lingeman, H.; Brinkman, U.A.T. *Chromatographia* **1991**, 32, 543-545.
- (4) Nielen, M.W.F.; Sanderson, J.T.; Frei, R.W.; Brinkman, U.A.T. J. Chromatogr. 1989, 474, 388-395.
- (5) Noll, R.J.; Zorn, M.E.; Mathew, J.; Sonzogni, W.C. J. Chromatogr. A 1998, 799, 259-264.
- (6) Onuska, F.I.; Terry, K.A. J. High Resolut. Chromatogr. 1989,12, 527-531.